七、概括与结论
量子力学60年来在权力、可应用性和优雅方面稳步地增长和加强。从20年代末和30年代初波尔、海森堡、波恩和其它人发展量子力学的哥本哈根解释以来,其哲学原理只经受了适度的修正。尽管如此,关于量子力学的意义仍然存在热烈的辩论,其中许多由这里评述的最近贝尔的分析所加强。量子力学缺乏合适的哲学框架确实是量子革命如此缓慢和痛苦的主要原因之一。我已尝试表明,对中观关于空性观点的同情理解可以帮助消化量子力学的意义。象Teller一样,我主张将我们的哲学立场从个别论或对内在存在的信念转移到基本的关系性,而不是修改量子力学的数学结构。
一方面中观可能对理解量子力学有所帮助,同时量子力学也可以帮助理解中观。如果这种古代的教义要征服现代人,它需要更多的当代例证,而不是“龟毛的外套”或者将绳子误认为蛇。量子力学可以提供强有力的例证来说明中观的某些侧面。它也可以复活例如俱缘中观派和依自起派古代的争论,后者主张在习俗意义上有内在的存在,这种立场在实验对贝尔不等式的否定面前更加难以坚持。
然而,目前这篇文章决非要通过物理学来证明中观佛教的有效性。使用科学证明或者否定各种宗教或世界观的主张有一个命运不济的漫长历史。撮合一种世界观与科学婚姻的尝试注定会过时。相反,我所做的是尝试理解重要的和经实验证实的哲学论断,使得关于某些量子属性缺乏独立存在的个别化理论独立化,并将其与中观的空性原理结合起来。
虽然许多哲学体系可以与实验对贝尔不等式的否定结合起来,我主张(中观的关键概念)空性,谈论量子力学的核心问题具有独一无二的直接性和力量。我已尝试应用空性来理解实验。然后我给出量子力学的标准观点,并因此建立与中观进一步的联系。我希望用这种方式去获得对古代解脱哲学和现代物理科学结果的一种更深层次的欣赏。考虑到科学-技术世界观的压倒性主导地位,目前形式的比较工作当然是中肯的,如果它能避免将中观或任何其它类似的思想主体部分还原为科学的一个分支的罪恶的话。
附录:贝尔不等式的非技术性推衍
假定上述包括到第五节前两段的讨论,我们可以推导出贝尔不等式的一个简单形式。现在我给出一个非技术的推导,它只需要基本的高中数学。
为方便起见,以第四节中描述的方式所收集的数据可以分为两种情形:情形1,两个检测器具有相同的开关设置,情形2,开关设置不同。下面逐一探讨。
情形1:两个检测器具有相同的开关设置。
现在数据是在开关设置为A-A,B-B,C-C的情形下收集的。这是EPR1935年在挑战量子力学的论文中所考虑的实验的基本精神,尽管那时只是一个思想实验而已。其数据可以简单概括如下:
<!--[if !supportLists]-->1,
<!--[endif]-->两个检测器总是记录到以同样的概率随机产生的相同记号++和--。
<!--[if !supportLists]-->2,
<!--[endif]-->+-和-+从不产生。
首先,必须确立两个关键的事实:在情形1中,对于三个检测器设置A-A、B-B、C-C中的任意一个,测量总是产生“+”“+”或“-”“-”而从不产生“+”“-”或“-”“+”。从这一点,我们可以推断出第一个关键事实:光子对的每一个成员在一个选定的方向上一定有相同的极性。如果在选定的方向上极性不相同,则可能会测量到+-或-+的结果,和情形1的结果相冲突。通过回忆一侧的开关设置与测量和另一侧的之间具有类空分离来确立第二个关键事实。它们之间不可能发生通讯,右侧粒子和检测器无法知道左侧检测器的位置和测量。因此我们可以选择沿着B或C测量右侧光子的极性,不会有充足时间将此信息通过任何方式传回给左侧光子来影响左侧的测量。例如说,我们用设于A的左侧检测器测量得+,设于B的右侧检测器测量得—。依靠着一对光子在一个给定的方向上观察到相同的极性,我们实际上测量了右侧光子的2个成分(沿A +和沿B-)。当然,这还利用了完备性或左右两侧光子存在彼此相互独立的假定。
我们同样还可以选择沿着C测量右侧光子,从而获得沿着A和C两个方向的两个值。这样我们推断右侧光子在A、B、C三个方向上一定同时具有完全特殊的极性,不管开关的设置如何。既然论证对于左侧和右侧来说是对称的,这就确立了第二个关键事实:两个粒子一定对于三个可能位置中任何一个都具有完全特定的极性。这两个关键的事实联系起来意味着,极性设置在三个方向上完全是特定的,并且它们与每一个光子对同一。情形1的数据连同局域性、彼此相互独立存在的假定,以及归纳推理的使用要求这一结论。
在前述的分析中,标准的推广是从以相同开关设置测量相同极性光子对的案例到不同开关设置的案例。既然一侧的测量或者检测器不可能影响到另一侧的测量或者检测器,我们基于彼此相互独立存在推断所有光子对在三个方向上一定具有相同的极性,不管其开关设置如何。
使用一个简单的符号来列举极性可能的不同种类,例如+--代表了一个光子在方向A上测量极性的结果是+(通过),在方向B上-(没通过),方向C上-;而+-+代表一个光子在方向A上+,方向B上-,方向C上+。有八种可能的极性组合:+++,++-,+-+,-++,---,--+,-+-,和+--。现在该考察开关设置不同时所收集的数据。
情形2:两个检测器具有不同开关设置
考虑一下开关设置为A-B,A-C,B-A,B-C,C-A,和C-B的情形。约翰·贝尔1964年的显赫成就是EPR思想实验的推广。正如下面所显示的那样,通过考虑开关设置不同的情形,实验可以直接与局域性隐变量理论对质。情形2的数据如下:
1:在1/4时间中检测器记录到以相同几率随机产生的相同符号++和--。
2:在3/4时间中检测器记录到以相同几率随机产生的不同符号+-和-+。
情形1和2的数据的独特型式起源于成对光子间相关性——一侧检测器测量的结果相关于,或者说关联到另一侧检测器检测的结果。
表1列举了情形2的测量的可能性。8行对应于可能的极性组合。6列对应于可能的开关组合。表中每一条目或是“同”或是“异”,表示条目的极性组合对于特定开关设置时,光子对产生相同或不同的测量结果。例如,表中下划线的条目表示当极性组合为+-+而开关设置为A-B时,两个光子被检测为不同的记号(左侧光子在A方向上为+,右侧光子在B方向上为-)。表1显示除了+++和---的极性组合外,总是有2个开关组合产生相同的结果,4个组合产生不同的结果。
相关表1
| A-B
| A-C
| B-C
| B-A
| C-A
| C-B
|
极性
+++
| 同
| 同
| 同
| 同
| 同
| 同
|
++-
| 同
| 异
| 异
| 同
| 异
| 异
|
+-+
| 异
| 同
| 异
| 异
| 同
| 异
|
-++
| 异
| 异
| 同
| 异
| 异
| 同
|
---
| 同
| 同
| 同
| 同
| 同
| 同
|
--+
| 同
| 异
| 异
| 同
| 异
| 异
|
-+-
| 异
| 同
| 异
| 异
| 同
| 异
|
+--
| 异
| 异
| 同
| 异
| 异
| 同
|
既然开关是独立和随机地设置的,我们知道对于一个给定的极性,6种开关组合发生的几率是相同的。暂时假定我们有一大群相同的光子——每一种极性组合都有相同的可能性。换句话说,在一个相同的样本中光子+--的可能性会象+++或者任何别的极性一样。按照这中假定,表中的每一个条目都具有相同的统计权重。表中有同样数量的“同”和“异”,因此如果测量这一相同样本的大量光子,有一半时间会产生同样的测量结果。
由于很快就会清楚的原因,接下来假定一个不一致的样本,其中的光子中没有+++或者---的极性,但是其它的极性表现是相同的。通过这种方式,我们去除那些对于所有开关设置总是产生相同结果的极性。现在对于所有剩余的极性有2个“相同”和4个“不同”,因此具有这些极性的光子(我们假定的不一致的样本)将总是只能记录到1/3的同样结果。对表1的思考显示任何极性的组合都将会产生至少1/3的相同的测量结果。换句话说,假定在一个测量样本的任意选择极性的混合,一定至少产生1/3的相同测量结果。
以上简单的记数练习显示(假定局域性和存在是相互独立的)至少1/3的光子应该记录到相同的符号。这是一个贝尔不等式的简化形式。另一方面,实验的结果是1/4——这正是标准量子力学所预言的结果。
上述结果如此重要而又优雅简洁,值得总结概括:情形1的数据显示当开关设置相同时(A-A,B-B,C-C),检测器的反应总是相同的。因为开关设置的时间安排,在局域性和相互独立存在的假定下,极性完全是特定的和等同于相关光子对的每一个成员。表列举了8种可能的极性及其对于6种不同的开关设置所产生的测量结果。它显示当开关设置不同时,没有任何极性组合所产生的测量结果中相同记号占检测器反应的比例低于1/3的;然而实验结果是1/4。实验对贝尔不等式的严格否定,上述记数的一种推广,迫使我们抛弃局域性隐变量理论。
在这篇论文的主体部分,尤其是在第5节和6节,我尝试了说明实验对于违反贝尔不等式的哲学和物理学意义。
--------------------------------------------------------------------------------------------------------------------------------------
译自International Philosophy Quarterly Vol.XXIX.No.4 Issue No. 116(December 1989) PP371-387