此外,为了将机轮完全收入机翼内,必须要研制一种特别窄的轮胎,并尽可能减小轮轴和主轮支柱之间的角度。当设计第一架原型机 Me 109V- 1 时,这种轮胎还没有研制出来,所以不得不在上翼面设计两个很大的鼓包,以容纳机轮。但由于战斗机重量的不断增加,导致机轮的尺寸和机轮主轮支柱之间的角度也势必增加,所以在 G-4 上,类似的鼓包再次出现,并在后期的型号上不断增大,这也说明 Me 109 已经达到了设计极限。
Me 109E 的机轮
主翼
主翼以单根翼梁为承力中心,但为了给主轮腾出空间,这根翼梁并不在机翼最厚的地方,而是在机翼的 45% 弦长处。翼梁与上翼面铆接在一起,并由相对较少的翼肋和桁条加固。下翼面则由若干可以轻易拆卸的翼板组成,并在中部开有一个很大的舱口,以容纳起落架和散热器。主翼通过 3 个连接点与机身相连接,2 个在主梁突出部的两侧,另一个如前文所述,在机翼前部,主要用来传递扭转载荷。以上这些设计使得机翼的制造过程十分简单,而且大幅降低了重量,但却牺牲了结构强度。所以当 Me 109 在高速机动时,副翼的偏度会使机翼变形,这会减小操纵效率,并使滚转速率降低。喷火也有类似的缺陷,但并不严重,而象台风、暴风、P-51 和 P-47 这类飞机则更本不受这一缺陷的困扰,所以与 Me 109 相比,在战术上它们更有优势,尤其是在俯冲时。
型架上的左翼部件
缝翼也经过几次简化,比如为了在机翼内安装武器每条缝翼的长度减小了。其长度从 Me 109B(没有机翼航炮)的 2.9 米降到 E 型的 2.29 米,再降到 F 型的 1.76 米。由于缝翼作用是改变流经上翼面的气流并延缓气流的分离,所以长度的减小看来并没有影响其操纵特性。
Me 109G 的前缘缝翼
1939 年 4 月 26 日,Me 109 以 755 公里/小时的速度打破了世界纪录,不过 Me 109 在实战中的速度可能更高。1943 年,试飞员卢卡斯•施密德(Lukas Schmid)驾驶一架经过特殊改装,并装备了弹射坐椅的 Me 109F,在 5,790 米的高度成功地达到了 900 公里/小时。为了增加飞行速度,梅塞施密特的设计小组采用了一种简单的解决方法,就是减少机翼面积。F 型的第一架原型机 Me 109V24 的新型机翼和 Me 109E 的机翼几乎完全相同,但短了大约 0.5 米,副翼长度也从 1.68 米减小到 1.45 米,同时弦长轻微增加,以弥补舵效率的损失。虽然目的达到了,但增加了翼载,导致难以操控的飞行特性,所以最终 F 型还是采用了比 E 型稍大的翼展(7.16 米),并在机翼上加装了一个椭圆形的翼尖延伸部分,看起来很像简易版的喷火机翼。由于增大了展弦比,F 型机翼的诱导阻力大幅下降,并提高了偏转性能。此外,为了追求更好的气动特性,还将散热器移到了翼根处,并将原来的布制襟翼蒙皮替换成了铝制。这使得 F 型的操纵性能明显提高,而后期的 G 型和 K 型虽然采用了类似的机翼,但为了提高高空性能和火力,操纵性能反而不如 F 型。
Me 109E 的“直线型”机翼
从 Me 109F 起,开始采用圆翼尖
尾翼
尾翼的结构很标准,垂尾和水平安定面是全金属结构的,方向舵和升降舵采用的是由冲压合金翼肋组成的轻型框架结构,布质蒙皮。虽然以当时的标准来衡量,Me 109 在某些方面非常先进,但一些落后于时代的设计仍使人惊讶,比如在 F 型出现之前,Me 109 的水平安定面和下部机身之间仍保留着支撑杆。而由于垂尾和水平安定面的机翼面积很小,所以采用了非对称的机翼曲面用以抵消螺旋桨扭距。在初期的型号上,方向舵采用的是一种动态补偿方式——突角补偿,不过由于缺少调整片,操作起来很费力,在后期的型号上,方向舵使用了木制组件使得强度降低,所以不得不使用静态补偿方式——在铰接点上安装了一块固定式配重,并加上了调整片。
左:Me 109 大多数型号上安装的突角补偿垂尾。右:在 Me 109G-10 和 Me 109K 型上采用了带调整片和配重的垂尾
随着发动机功率及螺旋桨扭矩的增加,垂尾和方向舵也不断被增大。这些增大的部件是由早期型号直接翻新而来,但和原先较小的型号相比,在偏航飞行时操控性能显得有些不足。为此,德国人设计了一对优美的蝶形尾翼,安装在一架编号为 Werknr 14003/VJ+WC 的 Me 109G 上,并于 1943 年 3 月到 5 月间进行了试飞。试飞员鲍尔(Baur)和温德尔(Wendel)认为其结果令人失望,起飞时的偏航控制甚至比普通的 Me 109 更加困难,已经大大超过了一般飞行员的能力,所以不久计划便被搁置下来。
比如,Me 109B 的升降速度表在之后的改进型中被取消,直到最终改进型 Me 109K 才再次安装,期间德国飞行员只能依靠高度表和速度表得出大致的升降速度。而像人工地平仪这样在恶劣气候下甚至是夜间飞行时必备的仪表,要晚到 Me 109G 时才替代了简单的转弯侧滑仪,而此时德国人已经在不列颠战役中吃尽了苦头。当然,不列颠战役的教训不止于此,在对无线电通讯设备进行改进时,德国人也没忘了加装更加先进的无线电导航系统,比如 FuG 16Z 和体积更小的 FuG 16ZY。Me 109E 的桨距控制杆的安装在仪表版的正中间,这显然很不合理,飞行员得花大力气才能扳动它,所以在 Me 109E 的后期型号上,这个装置被移到了油门操纵台上,并最终在 F 型上被自变桨距螺旋桨取代。为了在狭小空间里解决设备冲突的问题,德国人经常采用铰接来安装设备,比如为了便于拆装座舱地板上的中轴航炮的后膛罩,轰炸控制板 ZSK 244 可以通过铰链移到一边去。Revi 瞄准距也可以移到右侧,这样可以改善前方的视野,并降低迫降时飞行员受伤的几率。仪表板由榉木胶合板制成,虽然制造工艺仍很复杂,但比起以硬铝制品便宜了 30%,工时也缩短了一半。
后期型 Me 109E 将桨距控制杆移到了油门操纵台上,注意图中说明。原先的位置被一块板盖住
Me 109 的座舱盖经常遭人嘲讽,这也难怪,其棱角分明的外形和众多的条框,再加上 30 公斤的重量和 8mm 厚度的玻璃(F 型),实在很难与喷火和野马的气泡式座舱盖相比。虽然德国人曾在 Me 109V-21 上试验过气泡式座舱,但最终并没有投入量产,因为使用气泡式座舱就必须降低机背的,这对于早已塞满了各种设备的 Me 109 来说,无疑是雪上加霜,而且还得重新设计机身!当然,坐在 Me 109 里,其座舱盖视野并非像人们想象的那么差,起码后背有块钢板挡着能让飞行员得到一些安慰,所以直到 Bf 109 G-5 德军才开始使用 Erla 式座舱盖(也就是加兰德座舱盖)。为了提高风挡的防弹性能,F-2 上加装了附加式防弹风挡,通过螺拴固定,方便拆卸。为了截击高空的轰炸机,某些 G 型和 K 型开始使用加压座舱,由发动机增压器提供增压气源,为此取消了座舱玻璃上的通风口,并将座舱完全密封,还在座舱内放置了干燥剂,防止加压的热空气雾化座舱玻璃。
设计 Me 109 的时候就确定了要在速度上超越对手,所以使用了当时的德国功率最大的 610 马力容克尤莫 210(Jumo 210),加上二战期间容克生产的尤莫 V 型发动机都是倒置的,正好适合 Me 109 的呈梯形的前部机身截面。由于水冷液中加入了乙二醇等添加剂,在 -38 的低温下不冻结,使 Me 109 能在寒冷的气候下照样使用。当然,德国人也曾考虑过气冷式发动机,Me 109V-21 就曾使用过一台星型发动机,但加宽了的机身使低速时的稳定性显得不足,必须增大垂尾和升降舵的面积才能解决问题,所以最终被放弃。
Me 109 的超前设计和简易的生产技术,使得其后 10 年间的不断改进成为可能,但其过小的机身却成了最大的瓶颈,使得发动机、航炮和机翼不能达到最佳的协调效果,所以德国人研制了如此众多改进型以适应不同的任务要求。根据 1939 年德国航空部的一份文件显示,威利.梅塞施密特认为 Me 109 将会在战争中逐渐失去领先地位,并应该在 1944 年被另一种飞机(这种飞机指的并非是 Me 262,也许是 Me 209)完全取代。虽然这一计划最后成为泡影,但却使得 Me 109 远远超过了其设计极限,最终成为一代名机。从某中意义上来讲,Me 109 也成了德国空军的最好写照。