找回密码
 注册

QQ登录

快捷登录

新浪微博登陆

搜索
CDD 法语助手

一个摧毁华尔街的中国人

7
回复
2768
查看
[ 复制链接 ]
头像被屏蔽

新浪微博达人勋

提示: 该帖被管理员或版主屏蔽
2009-3-28 12:05:44

新浪微博达人勋

李祥林(DavidX.Li)

从上世纪80年代中期起,华尔街就开始依赖金融工程精英们来创造各种新的获利途径。他们创造金钱的方法一直成功运转了这么多年,直到其中一种“突然”引发了这场全球性的经济灾难。

一年前,人们总认为像李祥林(DavidX.Li)这样的数学天才可能会在某日得到诺贝尔奖的眷顾,因为金融经济学者,甚至华尔街的这类人才的确此前也获得过诺贝尔经济学奖。李祥林的开创性工作是衡量投资风险,而在金融领域,他的成果与以前获得过诺贝尔奖的学者的贡献相比更有影响力、更快速地得到广泛应用。然而,当晕头转向的银行家、政治家、监管者和投资者在这场自“大萧条”以来最严重的金融大崩溃的废墟中寻找事发根源时,他可能更应该庆幸的是自己还有一份金融业的工作。

李祥林从事的研究是确定资产间的相关性,也就是将一些完全不同的事件之间的关联度用数学模型来量化。这是金融领域中的一大难题,但他构建的被称为高斯相依函数的公式能以数学手段令极其复杂的风险比以前更容易和精确地被衡量。基于这一公式,金融机构能够大胆地出售各种新型证券和金融衍生品,将金融市场扩张至几乎不可思议的水平。

从债券投资者到华尔街的银行,从评级机构到监管机构,几乎每一个人都在使用李祥林的公式。很快,利用这一公式来衡量风险的方法已经在金融领域深入人心,并且帮人们赚到了大量金钱,使得任何对此公式的局限性的警告都被人们忽视了。

然而,突然间,使用这一公式的人们发现,金融市场开始出乎他们意料之外地变化。小小的裂缝在2008年演变成了巨大的峡谷,瞬间吞噬了成千上万亿的资金,将全球银行体系推向了崩溃的边缘,并引发了这场波及全球各个角落的经济危机。

可以肯定地说,李祥林在短期内都不可能获得诺贝尔经济学奖的眷顾了。而这场金融大海啸也使得金融经济学此前受人们顶礼膜拜、坚信不疑的地位不复存在。

为何数学公式的影响如此之大

令人们惊诧的问题是,一个数学公式怎会给金融界带来如此毁灭性的结果?答案隐藏在让养老基金、保险公司和对冲基金向企业、各国家和购房者发放数万亿美元贷款的庞大债券市场中。一个企业若要发行债券借款,投资者会严密审查公司账目,以确认公司能有足够资金偿还贷款。若放款人认为贷款的风险很高,他们索要的利息率也会更高。

债券投资者都是在赌“大概率事件”,如果债券违约的概率是1%,而他们可以获得额外2%的利息,他们就会蜂拥而上购买该债券。这就好比一个赌场,人们不介意偶尔输掉一些钱,只要大多数的时间里,他们都在赢钱。

债券投资者通常也对由数百乃至上千个住房按揭贷款构成的资产池进行投资。现在涉及的这类活动总规模大得惊人:美国购房人所欠下总债务已达11万亿美元。然而,按揭贷款资产池的情况比债券市场更混乱。这类投资中,因购房者每月集体偿还的现金量,是取决于已获得再融资的购房人数量和因违约未还款人的函数,因此投资不存在保证性的确定利率。同样,如此借贷活动也无固定的还款到期日。因购房人以无法预测的时间偿还按揭,例如购房者决定出售房产,因此池内的还款总数也是无规律可循。最令人头痛的问题是,尚无法找到给违约出现机会确定一个单个概率值的办法(即概率越高、贷款损失风险越大)。

华尔街解决的办法是,通过一个称之为划分等级(tranching)的办法,它将整个池内各类资产进行分级,创建以标注3A评级的无风险的安全债券。位于第一级别的投资者能够最先获得偿还债息,其他类别投资者虽因违约风险较高而评级稍低,但可收取更高的利率。

评级机构和投资者之所以对3A级的债券感到放心是因为他们相信,成百上千的贷款购房者不会在同一时间内发生违约行为。某人可能会丢掉工作,其他人可能生病。但这些都是不会给按揭贷款资产池整体带来重大影响的个体不幸事件。但所有的灾难性事件并非都是个体性,等级划分做法并未解决资产池风险的全部问题。

房价可能下跌的事件会在同时影响到一大批人。如某购房者家附近住房价值下跌,此人住房的资产净值也同样会下降,他周边邻居的房产会跟着下跌的可能性很大。一旦此购房人还款违约,周边邻居违约的可能性也很大。这就是所谓的相关性,即一个变量变化与另一些变量的关系和影响程度,度量此关系和关系程度高低是确定按揭贷款债券风险大小的重要部分。

只要投资者能够对风险定价,他们就愿意冒险。他们厌恶的是不确定性,即无法确定风险大小。正因如此,债券投资者、按揭贷款放款者拼命地想要找到能够度量、模拟相关性,并对其进行定价的方法。在计量模型应用于金融市场前,令投资者对按揭贷款资产池中投资感到安全的唯一时刻是不存在风险,即这类债券都是由联邦政府通过房地美和房利美两家企业进行隐形担保。

随着全球金融市场在上世纪90年代快速扩张,数以万亿计美元要进入市场,若投资者能够找到确定任何资产间的相关关系的方法,这些资金便能顺利进入市场。但这是个折磨人的痛苦问题,特别是考虑到成百上千类资产在时刻不停波动和变化。无论是谁解决了这样一个问题不仅会赢得华尔街永恒的感谢,而且非常可能会引起诺贝尔奖委员会的关注。
2009-3-28 12:06:29

使用道具 举报

新浪微博达人勋

本帖最后由 十四 于 2009-3-28 12:17 编辑

后来,本来,

美国的代言人一直在四处寻找背黑锅的人,他们现在找到了一个理想的国家和一张特定的中国面孔来推卸责任。

http://www.pinggu.org/BBS/Archive_view_78_372556.html

来自中国江苏的数量分析专家  

  李祥林,42岁,身材高大,英语表达思想非常流畅。最近美国媒体介绍了他和他的模型,使这个数量分析专家广为人知。  

  李祥林的家乡是江苏连云港灌云县。父亲曾经是一名警官,李祥林是家中八个兄弟姐妹中最小的一个。他在国内分别读完了数学的本科以及金融的硕士。1987年,李祥林来到了加拿大,在那里取得了工商管理的硕士学位,又读了精算专业,考取了初级精算师,最后又获得了统计学的博士学位。


  “信用衍生债券把信用本身当做一个产品来交易,是证券业的革命性变化。”李祥林说。  

  信用衍生债券就是把投资者的风险出售,以各种组合在市场流通。相对于传统债券的单一买卖,它几乎可以无限制地交易下去。  

  李祥林的模型帮助预测在特定的信用衍生品下,投资者能期待什么样的回报、怎样定价、风险有多大以及应该采取什么样的策略来降低风险。现在,世界范围内的大投资者都已经开始用这个模型来做交易,每天仰赖这个模型运作的交易达到上百亿美元。  

  “李的模型让产生和交易衍生债务抵押债券(CDOs,collateralized debt obligations.)变得容易很多,”英国诺丁汉(Nottingham)商学院研究金融风险的教授凯文(KevinDowd)在一篇文章中这样评论,“而且他的模型很快就成为这个产业的当前标准。”  

  从爱情故事到公司关联模型  

  1996年,李祥林当时还在加拿大的皇家商业银行工作。这家银行虽然小,但在信用衍生证券方面可以算是先驱。  

  “那时候信用衍生证券是一个全新的概念,”李祥林说,“每天很多问题需要解决,需要考虑。”  

  当CDOs最先在业界出现的时候,怎样在一定时间范围内预估多重毁约的可能性,成为它最基本的技术挑战。李祥林的模型恰恰解决了这个问题。  

  2000年,华尔街的金融咨询公司的李祥林在《固定收入杂志》上发表了这个模型。 模型为许多新型信贷金融产品的发展铺平了道路。例如以“合成CDOs”(synthetic CDOs)下所保险的债务衡量,这个十年前还不存在的市场,到今年年底将会增长到2万亿美元。  

  现在,李祥林在一家叫做 Barclays Capital 的银行做全球信用衍生债券数量分析的管理。



ZT 李祥林 家庭成份:农民 学历:博士 杰出贡献:摧毁花街

http://www.taoguba.com.cn/Article/141316/1

       ……

         债券投资者都是在赌“大概率事件”,如果债券违约的概率是1%,而他们可以获得额外2%的利息,他们就会蜂拥而上购买该债券。这就好比一个赌场,人们不介意偶尔输掉一些钱,只要大多数的时间里,他们都在赢钱……

      
         华尔街解决的办法是,通过一个称之为划分等级(tranching)的办法,它将整个池内各类资产进行分级,创建以标注3A评级的无风险的安全债券。位于第一级别的投资者能够最先获得偿还债息,其他类别投资者虽因违约风险较高而评级稍低,但可收取更高的利率。
      
         评级机构和投资者之所以对3A级的债券感到放心是因为他们相信,成百上千的贷款购房者不会在同一时间内发生违约行为。某人可能会丢掉工作,其他人可能生病。但这些都是不会给按揭贷款资产池整体带来重大影响的个体不幸事件。但所有的灾难性事件并非都是个体性,等级划分做法并未解决资产池风险的全部问题……      
         只要投资者能够对风险定价,他们就愿意冒险。他们厌恶的是不确定性,即无法确定风险大小。正因如此,债券投资者、按揭贷款放款者拼命地想要找到能够度量、模拟相关性,并对其进行定价的方法。在计量模型应用于金融市场前,令投资者对按揭贷款资产池中投资感到安全的唯一时刻是不存在风险,即这类债券都是由联邦政府通过房地美和房利美两家企业进行隐形担保。
      
         随着全球金融市场在上世纪90年代快速扩张,数以万亿计美元要进入市场,若投资者能够找到确定任何资产间的相关关系的方法,这些资金便能顺利进入市场。但这是个折磨人的痛苦问题,特别是考虑到成百上千类资产在时刻不停波动和变化。无论是谁解决了这样一个问题不仅会赢得华尔街永恒的感谢,而且非常可能会引起诺贝尔奖委员会的关注。
      
         理解相关性概念
      
         为了让大家更好地理解“相关性”这个概念,我们举一个比较简单的例子:假设一个在读小学的小孩叫爱丽丝,她父母今年离婚的可能性是5%,她头上长虱子的可能性是5%,她看到她的老师踩到香蕉皮摔倒的可能性是5%,她获得班级朗读比赛冠军的可能性是5%。假设投资者们要交易一种基于爱丽丝身上发生的这些事件的概率的证券,他们的出价可能差不多……
      
         李祥林取得突破性进展
      
         李祥林,上世纪60年代出生在中国农村,成绩优异,获得了南开大学的经济学硕士学位,后来去美国留学,获得魁北克拉瓦尔大学的MBA学位。在此之后他继续深造,先后获得了加拿大滑铁卢大学的精算学硕士学位和统计学博士学位。1997年他在加拿大帝国商业银行开始了他的金融职业生涯,后来就职于巴克莱资本,并在2004年负责重建其数量分析小组……

      
         当一种CDS的价格上涨,这表明其标的资产违约的可能性上升。李祥林的突破在于,他不去浪费时间等待搜集足够的实际违约数据,因为实际违约在现实中比较少,取而代之,他利用CDS市场的历史数据作为判断依据。假设有两个借款者,我们很难通过他们过去实际违约的情况来计算他们的违约相关性,因为或许他们过去没有违约过。但我们可以通过观察针对这两位借款者的CDS的历史价格变化,如果走势较为一致,那么可以证明他们的相关性较大。李祥林利用这种价格走势的相关性作为“捷径”,假设了金融市场,这里特别是CDS市场,能够正确地对违约的可能做出相应的价格反映。
      
         这是对一个复杂问题进行的巧妙简单化。而且李祥林不仅仅简化了相关性的计算,他还决定完全不考虑资产池中的各个贷款之间复杂的关系变化。例如,如果资产池中的贷款数目增加,会发生什么变化?如果你将负相关性的贷款和正相关性的贷款组合放在一起,整个资产池的风险又如何变化?他说,都不用管这些。我们只用管一个最终的相关性数据,一个简单明了的数据就代表所有我们需要考虑的东西。
      
         这一发明使市场迅速发展
      
         这一公式的发明对资产证券化市场具有闪电效应……几乎任何资产都可以捆绑在一起变成3A证券——公司债券、银行贷款、住房抵押证券等等。这样形成的资产池一般被称为债务抵押证券(CDO),通过将资产池分级,打造出3A级的证券,即使这个证券的组成资产没有一个是3A级的。那么对于资产池中较低级别的证券怎么办?他们也想出了好办法:把多种CDO资产池中低级别的证券再捆绑在一起,组成一个资产池,再次进行分级。这样组成的投资工具叫做CDO2。到此为止,已经没有人真正知道这个产品包含了什么基础资产。但他们并不在乎,一切只需要李祥林的相依函数公式(Copula Function)就可以了。
      
         这些年里,CDS和CDO市场相互依存,共同壮大。数据显示,2001年年底,在外流通的CDS总额高达9200亿美元。到2007年年底,这一数字飙升至62万亿美元。同样,CDO市场总规模在2000年仅为2750亿美元,到2006年扩大至47000亿美元……
      
         公式背后的隐忧
      
         曾在穆迪的学术顾问研究委员会任职、现任美国斯坦福大学金融学教授的达雷尔 达菲(Darrell Duffie)指出,CDO市场几乎完全依赖这一相关性模型,高斯相依(Gaussian copula)一词已经成为全球金融界普遍接受的词汇,就连经纪商都依据这一公式对某个级别的债券进行报价。正如衍生品大师珍妮 塔瓦科里(Janet Tavakoli)所描述的那样,基于相关性的交易已经像一个极具传染性的思想病毒,遍布金融市场的每个角落。
      
         其实早在1998年,李祥林发明这一函数之前,数量金融学的顾问和讲师魏尔莫特(Paul Wilmott)就指出,金融数量之间的相关性是出了名的不稳定,任何理论都不能建立在这样不可预测的参数之上。这样的声音不止一个……投行们并没有理会这些警告,一方面是因为手握控制大权的经理们并不懂金融工程精英的各派争论,也无法理解各种数学模型的真正含义;另一方面,他们赚了太多钱,贪欲已经无法让他们停下来了……一旦房价下跌,所有被评为3A的无风险债券都会瞬间崩塌,没有退路可寻。尽管如此,他们都不愿意停止制造CDO。面对眼前大把利润的诱惑,没有人抵抗得住,他们要做的就是一边享受暴利一边祈求房价继续上涨。
      
         谁应该被指责?
      
         2005年秋,李祥林曾在《华尔街日报》表示,很少人真正理解了这一公式的核心。金融领域中,大多数人都认为李祥林不应该被指责。毕竟,他只是发明了这一数学模型。我们应该指责的是那些滥用模型的金融机构,是他们的贪欲导致整个金融界盲目地逐利,对这一模型的局限忽略不计,对外界的警告充耳不闻。
      
         李博士目前已经淡出人们对当前讨论金融危机原因的讨论,并于去年离开美国回到中国……
2009-3-28 12:12:23

使用道具 举报

新浪微博达人勋

好像现在他在中金
2009-3-29 21:37:44

使用道具 举报

新浪微博达人勋

大部分看不懂!,,,,。。。

但如果是真的话                          这样的人 多几个就好。。。
2009-3-29 21:53:36

使用道具 举报

新浪微博达人勋

看看以下评论,更详细而且易懂,太长了,我就不翻译了。注意李博士说的一句话:"The most dangerous part is when people believe everything coming out of it."(最危险的事是大家都尽信这个公式)
懂精算学的朋友可以下载李博士的那篇论文来看看:On Default Correlation: A Copula Function Approach

A year ago, it was hardly unthinkable that a math wizard like David X. Li might someday earn a Nobel Prize. After all, financial economists—even Wall Street quants—have received the Nobel in economics before, and Li’s work on measuring risk has had more impact, more quickly, than previous Nobel Prize-winning contributions to the field. Today, though, as dazed bankers, politicians, regulators, and investors survey the wreckage of the biggest financial meltdown since the Great Depression, Li is probably thankful he still has a job in finance at all. Not that his achievement should be dismissed. He took a notoriously tough nut—determining correlation, or how seemingly disparate events are related—and cracked it wide open with a simple and elegant mathematical formula, one that would become ubiquitous in finance worldwide.
For five years, Li’s formula, known as a Gaussian copula function, looked like an unambiguously positive breakthrough, a piece of financial technology that allowed hugely complex risks to be modeled with more ease and accuracy than ever before. With his brilliant spark of mathematical legerdemain, Li made it possible for traders to sell vast quantities of new securities, expanding financial markets to unimaginable levels.
His method was adopted by everybody from bond investors and Wall Street banks to ratings agencies and regulators. And it became so deeply entrenched—and was making people so much money—that warnings about its limitations were largely ignored.
Then the model fell apart. Cracks started appearing early on, when financial markets began behaving in ways that users of Li’s formula hadn’t expected. The cracks became full-fledged canyons in 2008—when ruptures in the financial system’s foundation swallowed up trillions of dollars and put the survival of the global banking system in serious peril.
David X. Li, it’s safe to say, won’t be getting that Nobel anytime soon. One result of the collapse has been the end of financial economics as something to be celebrated rather than feared. And Li’s Gaussian copula formula will go down in history as instrumental in causing the unfathomable losses that brought the world financial system to its knees.
How could one formula pack such a devastating punch? The answer lies in the bond market, the multitrillion-dollar system that allows pension funds, insurance companies, and hedge funds to lend trillions of dollars to companies, countries, and home buyers.
A bond, of course, is just an IOU, a promise to pay back money with interest by certain dates. If a company—say, IBM—borrows money by issuing a bond, investors will look very closely over its accounts to make sure it has the wherewithal to repay them. The higher the perceived risk—and there’s always some risk—the higher the interest rate the bond must carry.
Bond investors are very comfortable with the concept of probability. If there’s a 1 percent chance of default but they get an extra two percentage points in interest, they’re ahead of the game overall—like a casino, which is happy to lose big sums every so often in return for profits most of the time.
Bond investors also invest in pools of hundreds or even thousands of mortgages. The potential sums involved are staggering: Americans now owe more than $11 trillion on their homes. But mortgage pools are messier than most bonds. There’s no guaranteed interest rate, since the amount of money homeowners collectively pay back every month is a function of how many have refinanced and how many have defaulted. There’s certainly no fixed maturity date: Money shows up in irregular chunks as people pay down their mortgages at unpredictable times—for instance, when they decide to sell their house. And most problematic, there’s no easy way to assign a single probability to the chance of default.
Wall Street solved many of these problems through a process called tranching, which divides a pool and allows for the creation of safe bonds with a risk-free triple-A credit rating. Investors in the first tranche, or slice, are first in line to be paid off. Those next in line might get only a double-A credit rating on their tranche of bonds but will be able to charge a higher interest rate for bearing the slightly higher chance of default. And so on.
The reason that ratings agencies and investors felt so safe with the triple-A tranches was that they believed there was no way hundreds of homeowners would all default on their loans at the same time. One person might lose his job, another might fall ill. But those are individual calamities that don’t affect the mortgage pool much as a whole: Everybody else is still making their payments on time.
But not all calamities are individual, and tranching still hadn’t solved all the problems of mortgage-pool risk. Some things, like falling house prices, affect a large number of people at once. If home values in your neighborhood decline and you lose some of your equity, there’s a good chance your neighbors will lose theirs as well. If, as a result, you default on your mortgage, there’s a higher probability they will default, too. That’s called correlation—the degree to which one variable moves in line with another—and measuring it is an important part of determining how risky mortgage bonds are.
Investors like risk, as long as they can price it. What they hate is uncertainty—not knowing how big the risk is. As a result, bond investors and mortgage lenders desperately want to be able to measure, model, and price correlation. Before quantitative models came along, the only time investors were comfortable putting their money in mortgage pools was when there was no risk whatsoever—in other words, when the bonds were guaranteed implicitly by the federal government through Fannie Mae or Freddie Mac.
Yet during the ’90s, as global markets expanded, there were trillions of new dollars waiting to be put to use lending to borrowers around the world—not just mortgage seekers but also corporations and car buyers and anybody running a balance on their credit card—if only investors could put a number on the correlations between them. The problem is excruciatingly hard, especially when you’re talking about thousands of moving parts. Whoever solved it would earn the eternal gratitude of Wall Street and quite possibly the attention of the Nobel committee as well.
To understand the mathematics of correlation better, consider something simple, like a kid in an elementary school: Let’s call her Alice. The probability that her parents will get divorced this year is about 5 percent, the risk of her getting head lice is about 5 percent, the chance of her seeing a teacher slip on a banana peel is about 5 percent, and the likelihood of her winning the class spelling bee is about 5 percent. If investors were trading securities based on the chances of those things happening only to Alice, they would all trade at more or less the same price.
But something important happens when we start looking at two kids rather than one—not just Alice but also the girl she sits next to, Britney. If Britney’s parents get divorced, what are the chances that Alice’s parents will get divorced, too? Still about 5 percent: The correlation there is close to zero. But if Britney gets head lice, the chance that Alice will get head lice is much higher, about 50 percent—which means the correlation is probably up in the 0.5 range. If Britney sees a teacher slip on a banana peel, what is the chance that Alice will see it, too? Very high indeed, since they sit next to each other: It could be as much as 95 percent, which means the correlation is close to 1. And if Britney wins the class spelling bee, the chance of Alice winning it is zero, which means the correlation is negative: -1.
If investors were trading securities based on the chances of these things happening to both Alice and Britney, the prices would be all over the place, because the correlations vary so much.
But it’s a very inexact science. Just measuring those initial 5 percent probabilities involves collecting lots of disparate data points and subjecting them to all manner of statistical and error analysis. Trying to assess the conditional probabilities—the chance that Alice will get head lice if Britney gets head lice—is an order of magnitude harder, since those data points are much rarer. As a result of the scarcity of historical data, the errors there are likely to be much greater.
In the world of mortgages, it’s harder still. What is the chance that any given home will decline in value? You can look at the past history of housing prices to give you an idea, but surely the nation’s macroeconomic situation also plays an important role. And what is the chance that if a home in one state falls in value, a similar home in another state will fall in value as well?


http://www.wired.com/images/article/magazine/1703/wp_quant4_f.jpg

Here’s what killed your 401(k) David X. Li’s Gaussian copula function as first published in 2000. Investors exploited it as a quick—and fatally flawed—way to assess risk. A shorter version appears on this month’s cover of Wired.
Probability
Specifically, this is a joint default probability—the likelihood that any two members of the pool (A and B) will both default. It’s what investors are looking for, and the rest of the formula provides the answer.  
Survival times
The amount of time between now and when A and B can be expected to default. Li took the idea from a concept in actuarial science that charts what happens to someone’s life expectancy when their spouse dies.

Equality
A dangerously precise concept, since it leaves no room for error. Clean equations help both quants and their managers forget that the real world contains a surprising amount of uncertainty, fuzziness, and precariousness.
Copula
This couples (hence the Latinate term copula) the individual probabilities associated with A and B to come up with a single number. Errors here massively increase the risk of the whole equation blowing up.

Distribution functions
The probabilities of how long A and B are likely to survive. Since these are not certainties, they can be dangerous: Small miscalculations may leave you facing much more risk than the formula indicates.

Gamma
The all-powerful correlation parameter, which reduces correlation to a single constant—something that should be highly improbable, if not impossible. This is the magic number that made Li’s copula function irresistible.


Enter Li, a star mathematician who grew up in rural China in the 1960s. He excelled in school and eventually got a master’s degree in economics from Nankai University before leaving the country to get an MBA from Laval University in Quebec. That was followed by two more degrees: a master’s in actuarial science and a PhD in statistics, both from Ontario’s University of Waterloo. In 1997 he landed at Canadian Imperial Bank of Commerce, where his financial career began in earnest; he later moved to Barclays Capital and by 2004 was charged with rebuilding its quantitative analytics team.
Li’s trajectory is typical of the quant era, which began in the mid-1980s. Academia could never compete with the enormous salaries that banks and hedge funds were offering. At the same time, legions of math and physics PhDs were required to create, price, and arbitrage Wall Street’s ever more complex investment structures.
In 2000, while working at JPMorgan Chase, Li published a paper in The Journal of Fixed Income titled "On Default Correlation: A Copula Function Approach." (In statistics, a copula is used to couple the behavior of two or more variables.) Using some relatively simple math—by Wall Street standards, anyway—Li came up with an ingenious way to model default correlation without even looking at historical default data. Instead, he used market data about the prices of instruments known as credit default swaps.
If you’re an investor, you have a choice these days: You can either lend directly to borrowers or sell investors credit default swaps, insurance against those same borrowers defaulting. Either way, you get a regular income stream—interest payments or insurance payments—and either way, if the borrower defaults, you lose a lot of money. The returns on both strategies are nearly identical, but because an unlimited number of credit default swaps can be sold against each borrower, the supply of swaps isn’t constrained the way the supply of bonds is, so the CDS market managed to grow extremely rapidly. Though credit default swaps were relatively new when Li’s paper came out, they soon became a bigger and more liquid market than the bonds on which they were based.
When the price of a credit default swap goes up, that indicates that default risk has risen. Li’s breakthrough was that instead of waiting to assemble enough historical data about actual defaults, which are rare in the real world, he used historical prices from the CDS market. It’s hard to build a historical model to predict Alice’s or Britney’s behavior, but anybody could see whether the price of credit default swaps on Britney tended to move in the same direction as that on Alice. If it did, then there was a strong correlation between Alice’s and Britney’s default risks, as priced by the market. Li wrote a model that used price rather than real-world default data as a shortcut (making an implicit assumption that financial markets in general, and CDS markets in particular, can price default risk correctly).
It was a brilliant simplification of an intractable problem. And Li didn’t just radically dumb down the difficulty of working out correlations; he decided not to even bother trying to map and calculate all the nearly infinite relationships between the various loans that made up a pool. What happens when the number of pool members increases or when you mix negative correlations with positive ones? Never mind all that, he said. The only thing that matters is the final correlation number—one clean, simple, all-sufficient figure that sums up everything.
The effect on the securitization market was electric. Armed with Li’s formula, Wall Street’s quants saw a new world of possibilities. And the first thing they did was start creating a huge number of brand-new triple-A securities. Using Li’s copula approach meant that ratings agencies like Moody’s—or anybody wanting to model the risk of a tranche—no longer needed to puzzle over the underlying securities. All they needed was that correlation number, and out would come a rating telling them how safe or risky the tranche was.
As a result, just about anything could be bundled and turned into a triple-A bond—corporate bonds, bank loans, mortgage-backed securities, whatever you liked. The consequent pools were often known as collateralized debt obligations, or CDOs. You could tranche that pool and create a triple-A security even if none of the components were themselves triple-A. You could even take lower-rated tranches of other CDOs, put them in a pool, and tranche them—an instrument known as a CDO-squared, which at that point was so far removed from any actual underlying bond or loan or mortgage that no one really had a clue what it included. But it didn’t matter. All you needed was Li’s copula function.
The CDS and CDO markets grew together, feeding on each other. At the end of 2001, there was $920 billion in credit default swaps outstanding. By the end of 2007, that number had skyrocketed to more than $62 trillion. The CDO market, which stood at $275 billion in 2000, grew to $4.7 trillion by 2006.
At the heart of it all was Li’s formula. When you talk to market participants, they use words like beautiful, simple, and, most commonly, tractable. It could be applied anywhere, for anything, and was quickly adopted not only by banks packaging new bonds but also by traders and hedge funds dreaming up complex trades between those bonds.
"The corporate CDO world relied almost exclusively on this copula-based correlation model," says Darrell Duffie, a Stanford University finance professor who served on Moody’s Academic Advisory Research Committee. The Gaussian copula soon became such a universally accepted part of the world’s financial vocabulary that brokers started quoting prices for bond tranches based on their correlations. "Correlation trading has spread through the psyche of the financial markets like a highly infectious thought virus," wrote derivatives guru Janet Tavakoli in 2006.
The damage was foreseeable and, in fact, foreseen. In 1998, before Li had even invented his copula function, Paul Wilmott wrote that "the correlations between financial quantities are notoriously unstable." Wilmott, a quantitative-finance consultant and lecturer, argued that no theory should be built on such unpredictable parameters. And he wasn’t alone. During the boom years, everybody could reel off reasons why the Gaussian copula function wasn’t perfect. Li’s approach made no allowance for unpredictability: It assumed that correlation was a constant rather than something mercurial. Investment banks would regularly phone Stanford’s Duffie and ask him to come in and talk to them about exactly what Li’s copula was. Every time, he would warn them that it was not suitable for use in risk management or valuation.
In hindsight, ignoring those warnings looks foolhardy. But at the time, it was easy. Banks dismissed them, partly because the managers empowered to apply the brakes didn’t understand the arguments between various arms of the quant universe. Besides, they were making too much money to stop.
In finance, you can never reduce risk outright; you can only try to set up a market in which people who don’t want risk sell it to those who do. But in the CDO market, people used the Gaussian copula model to convince themselves they didn’t have any risk at all, when in fact they just didn’t have any risk 99 percent of the time. The other 1 percent of the time they blew up. Those explosions may have been rare, but they could destroy all previous gains, and then some.
Li’s copula function was used to price hundreds of billions of dollars’ worth of CDOs filled with mortgages. And because the copula function used CDS prices to calculate correlation, it was forced to confine itself to looking at the period of time when those credit default swaps had been in existence: less than a decade, a period when house prices soared. Naturally, default correlations were very low in those years. But when the mortgage boom ended abruptly and home values started falling across the country, correlations soared.
Bankers securitizing mortgages knew that their models were highly sensitive to house-price appreciation. If it ever turned negative on a national scale, a lot of bonds that had been rated triple-A, or risk-free, by copula-powered computer models would blow up. But no one was willing to stop the creation of CDOs, and the big investment banks happily kept on building more, drawing their correlation data from a period when real estate only went up.
"Everyone was pinning their hopes on house prices continuing to rise," says Kai Gilkes of the credit research firm CreditSights, who spent 10 years working at ratings agencies. "When they stopped rising, pretty much everyone was caught on the wrong side, because the sensitivity to house prices was huge. And there was just no getting around it. Why didn’t rating agencies build in some cushion for this sensitivity to a house-price-depreciation scenario? Because if they had, they would have never rated a single mortgage-backed CDO."
Bankers should have noted that very small changes in their underlying assumptions could result in very large changes in the correlation number. They also should have noticed that the results they were seeing were much less volatile than they should have been—which implied that the risk was being moved elsewhere. Where had the risk gone?
They didn’t know, or didn’t ask. One reason was that the outputs came from "black box" computer models and were hard to subject to a commonsense smell test. Another was that the quants, who should have been more aware of the copula’s weaknesses, weren’t the ones making the big asset-allocation decisions. Their managers, who made the actual calls, lacked the math skills to understand what the models were doing or how they worked. They could, however, understand something as simple as a single correlation number. That was the problem.
"The relationship between two assets can never be captured by a single scalar quantity," Wilmott says. For instance, consider the share prices of two sneaker manufacturers: When the market for sneakers is growing, both companies do well and the correlation between them is high. But when one company gets a lot of celebrity endorsements and starts stealing market share from the other, the stock prices diverge and the correlation between them turns negative. And when the nation morphs into a land of flip-flop-wearing couch potatoes, both companies decline and the correlation becomes positive again. It’s impossible to sum up such a history in one correlation number, but CDOs were invariably sold on the premise that correlation was more of a constant than a variable.
No one knew all of this better than David X. Li: "Very few people understand the essence of the model," he told The Wall Street Journal way back in fall 2005.
"Li can’t be blamed," says Gilkes of CreditSights. After all, he just invented the model. Instead, we should blame the bankers who misinterpreted it. And even then, the real danger was created not because any given trader adopted it but because every trader did. In financial markets, everybody doing the same thing is the classic recipe for a bubble and inevitable bust.
Nassim Nicholas Taleb, hedge fund manager and author of The Black Swan, is particularly harsh when it comes to the copula. "People got very excited about the Gaussian copula because of its mathematical elegance, but the thing never worked," he says. "Co-association between securities is not measurable using correlation," because past history can never prepare you for that one day when everything goes south. "Anything that relies on correlation is charlatanism."
Li has been notably absent from the current debate over the causes of the crash. In fact, he is no longer even in the US. Last year, he moved to Beijing to head up the risk-management department of China International Capital Corporation. In a recent conversation, he seemed reluctant to discuss his paper and said he couldn’t talk without permission from the PR department. In response to a subsequent request, CICC’s press office sent an email saying that Li was no longer doing the kind of work he did in his previous job and, therefore, would not be speaking to the media.
In the world of finance, too many quants see only the numbers before them and forget about the concrete reality the figures are supposed to represent. They think they can model just a few years’ worth of data and come up with probabilities for things that may happen only once every 10,000 years. Then people invest on the basis of those probabilities, without stopping to wonder whether the numbers make any sense at all.
As Li himself said of his own model: "The most dangerous part is when people believe everything coming out of it."



Liberty,and justice for ALL!
2009-3-30 00:43:04

使用道具 举报

新浪微博达人勋

又开始崇拜楼上的了.
2009-3-30 13:55:53

使用道具 举报

新浪微博达人勋

天呐,都是牛人~
2009-3-30 19:27:52

使用道具 举报

您需要登录后才可以回帖 登录 | 注册 新浪微博登陆

本版积分规则

返回顶部